Integrable $\mathrm{Z}_{\mathrm{n}}{ }^{*} \mathrm{Z}_{\mathrm{n}}$ Belavin model with non-trivial boundary terms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 262989
(http://iopscience.iop.org/0305-4470/26/12/033)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:49

Please note that terms and conditions apply.

Integrable $Z_{n} \times Z_{n}$ Belavin model with non-trivial boundary terms

Rui-Hong Yue \dagger and $\mathrm{Yi}-\mathrm{Xin}$ Chen \ddagger
\dagger CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China and (mailing address) Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, People's Republic of China \ddagger CCAST (World Laboratory), PO Box 8730, Beijing 100080, People`s Republic of China and (mailing address) Institute of Modern Physics, Zhejiang University, Hangzhou 310027, People's Republic of China

Received 15 April 1992, in final form 2 November 1992

Abstract

The open chain corresponding to the Belavin model is constructed by generalizing Skylanin's formalism to the case of the R-matrix with Z_{n} symmetry.

It is well known that quantum Yang-Baxter equation (QYBE) plays a key role in exactly solvable statistical models and integrable field theory. Recently, exact solutions of the QYBE have been studied fruitfully [1-5]. One way to study exactly solvable statistical systems is the quantum inverse scattering method (QISM) which was initiated by Faddeev and Takhtajan [6]. Skylyanin [7] had solved the open spin- $\frac{1}{2} H_{x x z}$ model by generalizing oISM to systems with independent boundary conditions on each end. This model with proper boundary conditions has the quantum group symmetry of $S U_{q}(2)[8,10]$. Therefore, Skylanin's method can be used to find new exactly solvable statistical models with quantum group symmetries. In Skylanin's paper [7], he assumes that R-matrices possess the following properties

$$
\begin{align*}
& P_{12} R_{12}(u) P_{12}=R_{12}(u) \tag{1}\\
& R_{12}^{t_{1}}(u)=R_{12}^{t_{2}}(u) \tag{2}\\
& R_{12}(u) R_{12}(-u)=\rho(u) \mathrm{id} \tag{3}\\
& R_{12}^{t_{1}}(u) R_{12}^{t_{2}}(u-2 \eta)=\tilde{\rho}(u) \mathrm{id} \tag{4}
\end{align*}
$$

where t_{i} denotes transposition in the i th space and id an identical operator. The $\rho(u)$ and $\tilde{\rho}(u)$ are some scalar functions. Unfortunately, most of the solutions of QYBE do not satisfy Sklyanin's assumption. Mezincescu and Nepomechie [9] extended Sklyanin's formalism to systems with the $P T$ symmetric R-matrices. The restrictive conditions of this generalization are

$$
\begin{align*}
& P_{12} R_{12}(u) P_{12}=R_{12}^{t_{1} t_{2}}(u) \tag{5}\\
& R_{12}(u)=V_{V}^{1} R_{12}^{t_{2}}(-u-\eta) \stackrel{V}{V}^{-1} \tag{6}\\
& R_{12}(u) R_{12}^{t_{1} t_{2}}(-u)=\rho(u) \mathrm{id} \tag{7}\\
& R_{12}^{t_{1}} M R_{12}^{t_{2}}(-u-2 \eta) M^{1}=\tilde{\rho}(u+\eta) \mathrm{id} \tag{8}
\end{align*}
$$

where $\stackrel{1}{V}$ stands for $V \otimes 1, V$ is a matrix determined by R-matrix and $M=V^{t} V$. The condition (8) can be derived from (6) and (7). However, the R-matrix based on A_{n}^{1} for $n>1$ does not have crossing symmetry (7). The spin open chains, which correspond to such R-matrices, cannot be treated directly using Sklyanin's formalism and its generalization.

Because the Z_{n} symmetric solution of the QYBE is related to algebra A_{n-1}^{1}, to exploit the symmetric properties of the Belavin $Z_{n} \times Z_{n}$ symmetric model is helpful for solving the above open problem. We have recently shown [11] that the Belavin solution R of QYBE satisfies the following symmetries

$$
\begin{align*}
& P_{12} R_{12}(u) P_{12}=R_{12}^{h_{1} h_{2}}(u) \tag{9}\\
& R_{12}(u) R_{12}^{h_{1} h_{2}}(-u)=\rho(u) \mathrm{id} \tag{10}\\
& R_{12}^{h_{1}}(u) R_{12}^{h_{2}}(-u-n w)=\tilde{\rho}(u, w) \mathrm{id} . \tag{11}
\end{align*}
$$

The superscript h_{i} denotes the Hermitian conjugation in the i th vector space and w is a new variable defined by $\eta=w / n+\frac{1}{2}+\tau / 2$. It is obvious that the relations (9)-(11) are not equivalent with Sklyanin's assumption (1)-(4) and its generalization (5)-(8).

In this paper, we extend their formalisms to the case of the R-matrix satisfying (9)-(11) to find the Hamiltonian of the Belavin model with independent boundary conditions. Recently, Hou et al had shown [12] that the quantum group $S L_{q}(n)$ can be considered as a limit of the quantum symmetric algebra in the $Z_{n} \times Z_{n}$ Belavin model, which is the generalized Skylanin algebra [13]. Hence, the formalism developed in this paper can be used to construct the Hamiltonian of the spin chain with quantum group $S L_{q}(n)$ symmetry.

First of all, let us recall the fundamentals of the $Z_{n} \times Z_{n}$ Belavin model [2] and the major results in our paper [11].

The Boltzmann weight of the $Z_{n} \times Z_{n}$ Belavin model can be written as

$$
\begin{equation*}
R_{j k}(u)=\sum_{\alpha \in Z_{n}^{2}} W_{\alpha}(u) I_{\alpha}^{(j)} I_{\alpha}^{(k) \dagger} \tag{12}
\end{equation*}
$$

where \dagger stands for Hermitian conjugation and $I_{\alpha}^{(j)}$ acts on the subspace of the j th site, $I_{\alpha}=h^{\alpha_{\mathrm{t}}} \mathrm{g}^{\alpha_{2}}, h$ and g are the $n \times n$ matrices with elements

$$
\begin{equation*}
h_{j k}=\delta_{j(\bmod n)}^{k+1} \quad \dot{g}_{j k}=\omega^{k} \delta_{j k} \tag{13}
\end{equation*}
$$

ω is equal to $\exp (i 2 \pi / n)$. The Boltzmann coordinate $W_{\alpha}(u)$ can be expressed in terms of the Jacobi theta function of rational characteristics $\left(\frac{1}{2}+\alpha_{1} / n, \frac{1}{2}+\alpha_{2} / n\right)$
$\sigma_{\alpha}(u) \stackrel{\text { def }}{=} \sum_{m=-\infty}^{\infty} \exp \left\{i \pi \tau\left(m+\frac{1}{2}+\frac{\alpha_{1}}{n}\right)^{2}+i 2 \pi\left(m+\frac{1}{2}+\frac{\alpha_{1}}{n}\right)\left(u+\frac{1}{2}+\frac{\alpha_{2}}{n}\right)\right\}$.
$W_{\alpha}(u)$ is read as

$$
\begin{equation*}
W_{\alpha}(u)=\frac{\sigma_{\alpha}(u+\eta) \sigma_{0}(\eta)}{\sigma_{\alpha}(\eta) \sigma_{0}(u+\eta)} \tag{15}
\end{equation*}
$$

The Boltzmann weights satisfy the QYBE

$$
\begin{equation*}
R_{12}(u-v) R_{13}(u) R_{23}(v)=R_{23}(v) R_{13}(u) R_{12}(u-v) \tag{16}
\end{equation*}
$$

The R-matrix of the Belavin model satisfies the symmetries (9)-(11), in which the
explicit expressions of the scalar functions are

$$
\rho(u)=n^{2} \frac{\theta\left[\begin{array}{l}
\frac{1}{2} \tag{17}\\
\frac{1}{2}
\end{array}\right](u+w, \tau) \theta\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](-u+w, \tau)}{\theta^{2}\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](w, \tau)}
$$

and

$$
\tilde{\rho}(u)=n^{2} \exp \{i \pi n w\} \frac{\theta\left[\begin{array}{c}
\frac{1}{2} \tag{18}\\
\frac{1}{2}
\end{array}\right](u, \tau) \theta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](-u-n w, \tau)}{\theta^{2}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](w, \tau)}
$$

where

$$
\theta\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](z, \tau)=\sigma_{0}(z) .
$$

In the operator representation, we can rewrite the Qybe (16) as

$$
\begin{equation*}
R_{12}(u-v)^{\frac{1}{L}}(u)^{\frac{2}{L}}(v)=\frac{2}{L}(v) \frac{1}{L}(u) R_{12}(u-v) \tag{19}
\end{equation*}
$$

by introducing an operator

$$
\begin{equation*}
L(u)=\sum_{\alpha \in \mathcal{Z}_{n}^{2}} W_{\alpha}(u) I_{\alpha} \otimes S_{\alpha} . \tag{20}
\end{equation*}
$$

From equation (19), one can show that the quantum operator S_{α} is the operator of the generalized Sklyanin algebra [13].

In order to construct the Hamiltonian with independent boundary condition, we have to extend the Sklyanin formalism to the case of an R-matrix satisfying the restrictive conditions (9)-(11). We introduce two generalized algebras \mathscr{T}_{+}and \mathscr{T}_{-} which are defined by the following relations
$R_{12}\left(u_{-}\right)^{\frac{1}{\mathscr{T}}}\left(u_{1}\right) R_{12}^{h_{1} h_{2}}\left(u_{+}\right) \mathscr{T}_{-}\left(u_{2}\right)=\mathscr{\mathscr { T }}_{-}\left(u_{2}\right) R_{12}\left(u_{+}\right)^{\frac{1}{\mathscr{S}_{-}}}\left(u_{1}\right) R_{12}^{h_{12} h_{2}}\left(u_{-}\right)$
and

$$
\begin{align*}
& R_{12}\left(-u_{-}\right) \mathscr{T}_{+}^{1-h_{1}}\left(u_{1}\right) R_{12}^{h_{1} h_{2}}\left(-u_{+}-n w\right)^{2} \mathscr{G}_{+}^{h_{2}}\left(u_{2}\right) \tag{21}\\
& \left.\quad=\frac{\mathscr{T}_{+}^{h_{2}}\left(u_{2}\right) R_{12}\left(-u_{+}-n w\right) \mathscr{T}_{+}^{h_{1}}\left(u_{1}\right) R_{12}^{h_{1} h_{2}}\left(-u_{-}\right)}{}\right) \tag{22}
\end{align*}
$$

where we have used the notation $u_{ \pm}=u_{1} \pm u_{2}$. These algebras, especially \mathscr{T}_{-}, are the fundamental of our construction. Our goal is to find the solution of equations (21) and (22) for the R-matrix given by (12) and (15). Cherednik's work [14] gives an important hint to solve the problem. Define a matrix $\mathscr{K}(u)$ as

$$
\begin{equation*}
\mathscr{K}(u)=\frac{1}{n} \sum_{\alpha \in \mathcal{Z}_{n}^{2}} W_{2 \alpha}(u) \omega^{2 \alpha_{1} \alpha_{2}} I_{2 \alpha} . \tag{23}
\end{equation*}
$$

The matrix $\mathscr{K}(u)$ satisfies the normalized condition $\mathscr{K}^{2}(0)=1$. Using the properties of the Jacobi theta function, one can show that $\mathscr{K}_{-}(u)=\mathscr{K}(u) \mathscr{K}(0)$ is a representation of the algebra \mathscr{T}_{-}and the mapping

$$
\begin{equation*}
\phi: \mathscr{K}_{-}(u) \mapsto \mathscr{K}_{+}(u)=\mathscr{C}_{-}^{h}\left(-u-\frac{n w}{2}\right) \tag{24}
\end{equation*}
$$

is isomorphic which gives a solution of equation (22). The proof of the above conclusions is a direct but rather tedious calculation. Here we only give the key steps of
the proof. First, we substitute $\mathscr{K}_{-}(u)$ into equation (21) and taking use of the formulas (8) and (10) in [14]. Second, we take the Hermitian conjugation of equation (21) and replace u_{i} with $-u_{i}-n w / 2$. The calculation shows that $\mathscr{K}_{+}(u)$ and $\mathscr{K}_{-}(u)$ defined as above give a representation of algebras \mathscr{T}_{+}and \mathscr{T}_{-}respectively. It is pointed out that the existence of $\mathscr{K}(u)$ means that of the solution of equations (21) and (22). If there exist inequivalent solutions, they correspond to spin chains with different boundary terms.

As usual, the monodromy matrix $T(u)$ is given by

$$
\begin{equation*}
T(u)=L_{N}(u) \ldots L_{1}(u) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{j}(u)=\sum_{\alpha \in Z_{n}^{2}} W_{\alpha}(u) I_{\alpha} S_{\alpha}^{(j)} \tag{26}
\end{equation*}
$$

and the superscript j denotes the quantum space acted on by the operator S_{α}. Using the QYbe (19) and $\mathscr{K}_{-}(u)$ satisfying equation (21), one can find that

$$
\begin{equation*}
\mathscr{T}(u)=T(u) \mathscr{K}_{-}(u) T^{-1}(-u) \tag{27}
\end{equation*}
$$

is a solution of equation (21). In the proof of this, the relations $L_{j}(u) L_{k}(v)=L_{k}(v) L_{j}(u)$, $j \neq k$ have been used. In the quantum inverse scattering method, the Hamiltonian of a system can be given by means of the transfer matrix. For the case of the open chain, we define the transfer matrix as

$$
\begin{equation*}
t(u) \doteq \operatorname{Tr} \mathscr{K}_{+}(u) \mathscr{T}_{-}(u) \tag{28}
\end{equation*}
$$

By a suitable generalization of Sklyanin's arguments [7], it now follows that the $t(u)$ forms a commutative family

$$
\begin{equation*}
[t(u), t(v)]=0 \tag{29}
\end{equation*}
$$

In order to prove equation (29), one can use equation (28) to rewrite

$$
\begin{aligned}
t(u) t(v) & =\operatorname{Tr} \mathscr{K}_{+}(u) \mathscr{T}_{-}(u) \operatorname{Tr} \mathscr{K}_{+}(v) \mathscr{T}_{-}(v) \\
& =\operatorname{Tr}_{12} \mathscr{\mathscr { K }}_{+}(u) \mathscr{T}_{-}(u) \mathscr{K}_{+}^{2}(v) \mathscr{T}_{-}(v) \\
& =\operatorname{Tr}_{12}\left\{\mathscr{K}_{+}^{h_{1}}(u) \mathscr{T}_{-}^{1}(u) \mathscr{K}_{+}^{h_{1}}(v) \mathscr{T}_{-}^{h_{2}}(v)\right\}_{1}^{c_{1} c_{2}}
\end{aligned}
$$

where c_{i} means complex conjugation in i th space. Now one can insert four R matrices using equations (10) and (11) and use the fact that \mathscr{T}_{-}and \mathscr{H}_{+}satisfy the equations (21) and (22) to change the order of \mathscr{T}_{-}and \mathscr{K}_{+}:

$$
\begin{aligned}
& \ldots=\operatorname{Tr}_{12}\left\{\mathscr{K}_{+}^{h_{1}}(u)\left(R^{h_{1}}\left(-u_{+}-n w\right) R^{h_{2}}\left(u_{+}\right)\right)^{h_{2} \mathscr{K}_{+}^{2} h_{2}}(v) \mathscr{T}_{-}^{\frac{1}{h_{1}}}(u)^{\frac{2}{\mathscr{T}} h_{-}^{h_{2}}}(v) \frac{1}{\tilde{\rho}\left(u_{+}, w\right)}\right\}^{c_{1} c_{2}} \\
& =\operatorname{Tr}_{12}\left\{\left(\mathscr{K}_{+}^{\frac{1}{h_{2}}}(u) R^{h_{1} h_{2}}\left(-u_{+}-n w\right) \mathscr{K}_{+}^{2}{ }^{h_{2}}(v)\right) \frac{1}{\rho\left(-u_{-}\right) \tilde{\rho}\left(u_{+}, w\right)}\right. \\
& \left.\times\left(\mathscr{T}_{-}^{\frac{1}{2}}(u) R^{h_{1} h_{2}}\left(u_{+}\right) \mathscr{T}_{-}(v)\right)^{h_{1} h_{2}} R^{h_{1} h_{2}}\left(u_{-}\right) R\left(-u_{-}\right)\right\}^{c_{1} c_{2}} \\
& =\operatorname{Tr}_{12}\left\{\left(R\left(-u_{-}\right) \mathscr{H}_{+}^{\frac{1}{h_{1}}}(u) R^{h_{1} h_{2}}\left(-u_{+}-n w\right) \mathscr{\mathscr { H }}_{+}^{\frac{2}{h_{2}}}(v)\right) \frac{1}{\rho\left(-u_{-}\right) \tilde{\rho}\left(u_{+}, w\right)}\right. \\
& \left.\times\left(R\left(u_{-}\right) \mathscr{T}_{-}^{1}(u) R^{h_{1} h_{2}}\left(u_{+}\right)^{2} \mathscr{T}_{-}(v)\right)^{n_{1} h_{2}}\right\}^{c_{1} c_{2}} \\
& =t(v) t(u) \text {. }
\end{aligned}
$$

In the last step, we omit the calculation similar to second and third steps.

The quantum space, acted on by the operator $S^{(j)}$, is isomorphic to the auxiliary space and, furthermore, the operator $L_{j}(u)$ coincides with the matrix $R(u)$ on the direct product space of the quantum and auxiliary spaces, i.e.

$$
\begin{equation*}
L_{j}(u)=R_{0 j}(u) \tag{30}
\end{equation*}
$$

We know from proposition 1 in [11] that if $R_{j k}(u)$ is normalized, the value of it at $u=0$ is the permutation operator. Differentiating $t(u)$ with respect to u at $u=0$, one can find the Hamiltonian of the open chain

$$
\begin{equation*}
H=\sum_{j=1}^{N-1} H_{j, j+1}+\frac{1}{2} \mathscr{\mathscr { M }}_{-}^{\prime}+\frac{\operatorname{Tr}_{0} \mathscr{\mathscr { K }}_{+}(0) H_{0, N}}{\operatorname{Tr} \mathscr{K}_{+}(0)} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{j, j+1}=\left.P_{j j+1} R_{j j+1}^{\prime}(u)\right|_{u=0} \tag{32}
\end{equation*}
$$

Substituting (12), (23) and $\mathscr{K}_{ \pm}$into (31), we obtain the Hamiltonian of the Belavin model with independent boundary conditions

$$
\begin{align*}
& H=\frac{1}{n^{2}} \sum_{j=1}^{N-1} \sum_{\gamma, \beta \in Z_{n}^{2}} W_{\beta}^{\prime}(0) \omega^{\langle\gamma, \beta)+\gamma_{1} \gamma_{2}} S_{\gamma}^{(j)} S_{-\gamma}^{(j+1)}+\frac{1}{2} \\
& \sum_{\gamma, \beta \in Z_{n}^{2}} W_{2 \beta}^{\prime}(0) \omega^{2(\gamma, \beta)+2 \gamma_{1} \gamma_{2}} S_{2 \gamma}^{(1)} \\
&+\frac{1}{\sum_{\alpha \in Z_{n}^{2}} W_{2 \alpha}(-n w / 2)} \tag{33}\\
& \times \sum_{\alpha, \beta, \gamma, \rho \in Z_{n}^{2}}\left\{\omega^{2 \alpha_{1} \alpha_{2}-2 \beta_{1} \beta_{2}+\langle\gamma, \rho\rangle+\gamma_{1} \gamma_{2}} W_{2 \beta}\left(-\frac{n w}{2}\right) W_{\rho}^{\prime}(0) \delta_{2(\alpha-\beta), \gamma}^{\bmod n} S_{\gamma}^{(N)}\right\}
\end{align*}
$$

where $\langle\gamma, \beta\rangle=\gamma_{1} \beta_{2}-\gamma_{2} \beta_{1}$. It is worth pointing out that the Hamiltonian (33) generally is not Hermitian as in the case of periodic boundary conditions because the parameters τ and $w(\eta)$ are complex variables. For periodic case, the exact solution of the Z_{n} Belavin model was found by Hou et al [3] and the eigenvalue of the Hamiltonian is not real. Generally, when the argument τ in the theta function approaches $\mathrm{i} \infty$ and w is well defined in proper field, the Hamiltonian is Hermitian. This is hinted at by the works of Hou et al [12], Pasquier and Saleur [8]. We will discuss this problem in detail and find the solution of the Hamiltonian (33) in a future paper.

In conclusion, we have generalized Sklyanin's formalism for constructing integrable open chains to the case of an R-matrix satisfying (9)-(11). As a direct application of our extension, we have constructed the Hamiltonian of the open chain corresponding to the Belavin model.

Acknowledgments

We would like to thank Professors B Y Hou, K J Shi, K Wu and P Wang for valuable discussions. It is a pleasure to acknowledge the hospitality of CCAST (World Laboratory). This work was supported in part by the National Natural Science Foundation of China.

References

[1] Baxter R J 1982 Exactly Solvable Model in Statistical Mechanics (London: Academic)
[2] Belavin A A 1980 Nucl. Phys. B 180109
[3] Hou B Y, Yan M L and Zhou Y K 1989 Nucl. Phys. B 324715
[4] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 3393
[5] Date E, Jimbo M, Kuniba A, Miwa T and Okado M 1987 Nucl. Phys. B 290231
[6] Takhtajan L A and Faddeev L D 1979 Russ. Math. Surv. 34
[7] Sklyanin E K 1988 J. Phys. A: Math. Gen. 212375
[8] Pasquier N and Saleur H 1990 Nucl Phys. B 330523
[9] Mezincescu L and Nepomechie R I N 1991 J. Phys. A: Math. Gen. 24 L17: 1991 Mod. Phys. Lett. 6 A 2497
[10] Bazhanov V V 1987 Comm. Math. Phys. 113471
[11] Yue R H and Chen Y X Preprint AS-ITP-92-20
[12] Hou B Y, Shi K J and Yang Z X Preprint IMP-NWU-91
[13] Hou B Y and Wei H 1989 J. Math. Phys. 302750
[14] Cherednik I V 1984 Theor. Math. Phys. 61 911; 19831777

